দ্বিখাত তিনখাত বিশিষ্ট ক্লাসটি এইচএসসি বা একাদশ ও দ্বাদশ শ্রেনী [ HSC Class 11-12 ], অর্থনীতি ১ম পত্র [ Economics First Paper ] বিষয়ের, ৯ম অধ্যায় [ Chapter 9 ] এর পাঠ। এইচএসসি বা একাদশ ও দ্বাদশ শ্রেনী [ HSC Class 11-12 ], অর্থনীতি [ Economics ] এর আরও ক্লাস পেতে যুক্ত থাকুন “অর্থনীতি গুরুকুল [ Economics Gurukul ]” এর সাথে।
Table of Contents
দ্বিখাত তিনখাত বিশিষ্ট
দ্বিঘাত সমীকরণ
গণিতশাস্ত্রে, দ্বিঘাত সমীকরণ হল দুই মাত্রার বহুপদী সমীকরণ যার সাধারণ রূপ:
এখানে x একটি চলক এবং a, b ও c ধ্রুবক যেখানে a এর মান শুন্য হতে পারে না। কারণ a শূণ্য হলে এটি একটি একঘাত সমীকরণে রূপ নেবে। দ্বিপদ সমীকরণের ইংরেজি প্রতিশব্দ কোয়াড্রেটিক এসেছে ল্যাটিন শব্দ কোয়াড্রেটাস (quadratus) থেকে যার অর্থ বর্গ।
দ্বিঘাত সমীকরণে শুধুমাত্র একটি অজানা রাশি বা চলক থাকে। তাই একে একচলক সমীকরণ বলে। এই সমীকরণে শুধুমাত্র x এর দ্বিতীয় ঘাত থাকে। তাই এটি দ্বিঘাত বহুপদী।
দ্বিঘাত সমীকরণ মধ্যপদ বিশ্লেষণ (ইংরেজিতে factoring, factorising, factorizing বা middle-term নামে পরিচিত) এর মাধ্যমে, বর্গ পূর্ণ করার মাধ্যমে, মূল নির্ণয় সূত্রের সাহায্যে অথবা লেখচিত্রাঙ্কনের সাহায্যে। দ্বিঘাত সমীকরণের মত গাণিতিক সমস্যার সমাধান মানুষ ২০০০ খ্রিস্টপূর্বেও করেছে বলে জানা যায়।
তিনখাত সমীকরণ
গণিতশাস্ত্রে, ত্রিঘাত সমীকরণ হল তিন মাত্রার বহুপদী সমীকরণ যার সাধারণ রূপ:
যেখানে, a ≠ 0
ত্রিঘাত সমীকরণের বীজসংখ্যা সর্বদা তিনটি। তবে সহগগুলির বিভিন্ন মানের জন্য সমীকরণের তিনটিই বাস্তব বীজ হতে পারে , অথবা একটিমাত্র বাস্তব বীজ হতে পারে।
ত্রিঘাত সমীকরণের বীজ নির্ণয়ে শূন্য পদ্ধতির ব্যবহার করা যেতে পারে। এই পদ্ধতিতে বীজ নির্ণয়ের ক্ষেত্রে সমীকরণটির বামপক্ষে চলরাশির স্থানে বিভিন্ন মান বসিয়ে ডানপক্ষের মান শুন্য আনতে হয়। যে মানের জন্য সমীকরণটির বামপক্ষ ও ডানপক্ষ উভয়ের মানই শুন্য হচ্ছে , সেটি সমীকরণটির একটি বীজ। এরপর নিম্নোক্ত উপায়ে সমীকরণটি প্রকাশ করা যায় :-
(ax3+ bx2 + cx + d) = (x – a) * f(x) যেখানে a হলো সমীকরণটি একটি বীজ এবং f(x) হলো অপর একটি বহুপদী রাশিমালা , যেটি প্রকৃতপক্ষে একটি দ্বিঘাত সমীকরণ। f(x) কে এরপর শ্রীধর আচার্যের সূত্র প্রয়োগ করে বা গুণনীয়কে বিশ্লেষণ করে সমাধান করা যেতে পারে।

এই পদ্ধতির অসুবিধা হল এই যে প্রথমে যে বীজটি হাতেকলমে নির্ণয় করতে হয় , সেটি যেকোনো বাস্তব সংখ্যাই হতে পারে , ফলে কার্যতঃ অসংখ্য সংখ্যার মাঝে খুঁজে দেখতে হতে পারে , যা অসম্ভব। এ ছাড়াও সমীকরণের বীজ নির্ণয় ও তার জন্যে বহুপদী রাশিমালাটির মান নির্ণয় অনেক কষ্টসাধ্য হতে পারে খুবই বড় সংখ্যার ক্ষেত্রে অথবা বিভিন্ন মূলদ ও অমূলদ সংখ্যার ক্ষেত্রে।
প্রথম অসুবিধা দূর করা যেতে পারে কলনবিদ্যার সাহায্য নিয়ে। সমীকরণটির প্রথম মাত্রার অবকলন নির্ণয় করলে যে দ্বিঘাত সমীকরণ পাওয়া যায় , তার বীজদ্বয়ের মধ্যে সমীকরণটির একটি বীজ থাকবেই , এবং যদি বীজদ্বয় অবাস্তব হয় , সেক্ষেত্রে বলা যায় সমীকরণটির একটিমাত্র বাস্তব বীজ বর্তমান যখন চলের তৃতীয় ঘাতের সহগ অশুন্য। এবং চলের বিভিন্ন মান বসিয়ে দেখতে হয় কোন ক্ষেত্রে চলের মান শুন্যের কাছে আসছে অথবা শুন্য হচ্ছে। অবকলনে প্রাপ্ত সমীকরণটি হল :-
- 3ax2 + 2bx + c = 0
- বাস্তব ও সমান বীজের শর্ত 9ac = b2
- বাস্তব বীজের শর্ত b2 > 9ac
- অবাস্তব বীজের শর্ত b2 < 9ac
দ্বিখাত তিনখাত বিশিষ্ট নিয়ে বিস্তারিত ঃ
আরও পড়ূনঃ